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20BJ: a metalogical framework theorem prover
based on equational logic

By JosErH GoGUEN!, ANDREW STEVENS, HENDRIK HILBERDINK AND
Keita HoBLEY

Programming Research Group, Oxford University Computing Laboratory,
4 11 Keble Road, Oxford OX1 3QD, UK., and ‘SRI International, Menlo Park,
California. US.A.

This paper describes 20BJ, a tactic-based generic theorem prover that encodes
object logics into equational logic via an abstract data type of object logic sentences
and proofs. 20BJ is built upon OBJ3, a term rewriting implementation of (order
sorted conditional) equational logic. Because object logic proofs are explicitly
represented, 20BJ can not only reason with them, but also about them, as in
arguments by symmetry and other metalogical devices of ordinary mathematics;
this motivates the ‘meta’ of ‘metalogical’ in the title. First-order equational logic
has advantages in simplicity and efficiency over more complex framework logics,
such as intuitionistic higher-order type theory, and also facilitates the definition of
tactic languages. In addition, 20BJ benefits from OBJ3’s powerful parametrized
module system, and it has a convenient X window user interface. The paper
concludes with a sketch of some semantic foundations based upon ruled parchments,
charters, and institutions.
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1. Introduction

There is a population explosion among the logical systems used in many areas of
computing science, including hardware description and verification. Unfortunately,
there does not seem to be any one logical system that is clearly better than all the
rest, even for such a specialized area as hardware design. This situation has inspired
the development of so-called ‘logical frameworks’, which are systems within which
theorem proving for a range of ‘object logics’ can be implemented by encoding into
a logical system called a framework logic, usually a powerful type theory. This paper
argues for using a very simple framework logic, namely order sorted equational logic,
because of several practical advantages.

1. It is easier to implement an equational logic efficiently, because of its well-
explored technology base with many efficient implementation techniques, such as
term rewriting and unification.

2. It is easier to encode logics into equational logic. Indeed, the basic idea is very
simple: formulae and proofs are terms; and deduction is term rewriting (in general,
conditional).

3. When proof systems are encoded using an abstract data type of proofs, it is
easier to use and justify ‘reasoning by symmetry ’ and other metalogical devices that
can often greatly simplify proofs.

4. It is also easier to reason about properties of the logical framework itself, such
as the correctness of a given implementation technique, or of a given encoding.
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70 J. Goguen and others

5. Our framework logic (equational logic) is executable, so that a tactic
programming language can be implemented directly in it.

The 20BJ system dramatically illustrates the first and last points by building on
the already developed OBJ3 term rewriting system, which is rigorously based on
(conditional order sorted) equational logic, and provides a number of other helpful
facilities, such as: (1) an efficient implementation of term rewriting; (2) rewriting
modulo associativity and/or commutativity; (3) a powerful parametrized module
mechanism, as well as multiple inheritance for modules, and a number of built-in
modules for basic abstract data types; (4) a distinction between executable and
property-oriented modules, with so-called ‘views’ for asserting that a given module
satisfies a given set of properties; (5) module expressions for describing and building
systems out of given modules, using views as bindings for the interfaces of para-
metrized modules; (6) easy access to programs in LISP (or C), to provide efficient
‘built-in’ implementations for specific decision procedures (such as propositional
logic); (7) user definable prefix, infix, and mixfix (as in if _then else fi)
syntax; and (8) a convenient and expressive notion of subtype, provided by the
order sorted framework logic.

20BJ has an X window based graphical user interface for applying rules of
deduction with OBJ3 under the control of a tactic language. The name 20BJ was
chosen because the system uses OBJ to implement both object and meta-level logics.

OBJ3’s ability to ‘build-in’ new features through the underlying LISP is useful for
implementing tactic languages. As far as we know, no other logical framework
provides tactic languages, although these can save much effort in actually doing
proofs. OBJ3’s parametrized module facility provides a higher-order capability,
which compensates for its lack in the underlying first order equational logic, and
which also enhances the reusability of (parts of) encodings. See Futatsugi ef al. (1985)
and Futatsugi et al. (1987) for more information on OBJ, and Goguen et al. (1992) for
the latest information on OBJ3.

The basic approach to encoding an object logic in 20BJ is to regard its proofs as
an abstract data type, which is then manipulated by its rules of deduction; we use
the word ‘frame’ for such an encoding. The connection between equational logic,
abstract data types, and term rewriting is now so well known that it should need no
further elaboration as motivation for building a logical framework on a system like
OBJ3. This paper is focused on implementation techniques rather than on their
logical foundations, but we do briefly describe our approach to foundations, based on
representing logical systems by parchments enriched with ‘rulings’ to capture
inference rules.

This work is part of the SSVE project, supported jointly by SERC and DTI; this
collaboration between Oxford and RHBNC aims to develop a uniform environment
for hardware specification, simulation and verification, that can be used with a
variety of hardware description languages, by translating them into a rigorous kernel
language, called FUNNEL. In this context, 20BJ is a ‘logical funnel’ supporting
multiple logical systems for hardware design, such as temporal logic, first-order logic,
higher-order logic, propositional logic, and second-order equational logic. However,
20BJ has many other applications, for example, in software development.

Phil. Trans. R. Soc. Lond. A (1992)
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20BJ : a metalogical framework theorem prover 71

2. Mechanized theorem provers and logical frameworks

Automatic theorem provers provide fully automated proof search, guided
primarily by the axioms and lemmas available to the system. The proofs found by
such systems depend on the search strategy implemented, although in practice users
can often get the behaviour that they want by setting proof search parameters or by
providing hints about the likely role of particular lemmas and axioms. Good
examples of such systems are the Otter resolution theorem prover (McCune 1989),
Boyer & Moore’s xQTHM (Boyer & Moore 1980), and Bundy’s Clam (Bundy et al.
1990). By contrast, mechanized theorem provers like 20BJ are proof assistants that
support the construction of proofs by human beings, by allowing commonly used
proof procedures to be programmed as proof tactics. A proof checker is a proof
assistant without a tactic language. (Typical current generation automatic theorem
provers are of limited use as proof assistants, and are also difficult to integrate into
systems other than those for which they were designed. In principle, it is possible to
write tactics that implement the proof search strategies of automatic theorem
provers. But in practice, this would be very hard to do in a worthwhile
way.)

The conventional architecture for mechanized theorem provers follows the
Edinburgh LCF system from the late 1970s (Gordon et al. 1979) in implementing a
logic as an abstract data type (apT) of proofs (or theorems) written directly in a
programming language (usually LISP or ML), so that the inference rules of the logic
are primitive operations of the ApT. This permits tactics to be implemented elegantly
as programs that apply these primitives. The soundness of such proofs can be
rigorously enforced through the type discipline of the programming language. HOL
(Gordon 1985) and Nuprl (Constable et al. 1986) are well-known systems with this
architecture.

Unfortunately, the Lcr architecture has some significant drawbacks in practice.
First, it implements just one hard-wired logical system, and cannot easily be
configured to implement other logics. Second, mechanizing a logic in this way
restricts mechanized reasoning to the object level, so that it is not possible to reason
about (rather than within) the implemented logic.

Motivated by these problems, recent work in mechanized theorem proving
(Constable & Basin 1991; Harper et al. 1987; Matthews et al. 1991) has focused on
logical frameworks, in which logics are mechanized indirectly by encoding them
within a suitable framework logic that is mechanized in the conventional way. Proofs
in the encoding logic, which is called the object logic, are constructed in encoded form
by reasoning in the framework logic. Such systems mechanize a logic by introducing
axioms to define the logic’s syntax and inference rules. Given a suitable framework
logic, it is usually relatively easy to write the axioms for a frame from a pencil and
paper presentation of an object logic, and to verify these axioms against it, because
the axioms are usually close to those in the pencil and paper presentation.

Thus logical frameworks have the potential to mechanize logical systems ‘on
demand’ for experimentation or for the specialized needs of particular users. This
flexibility can be valuable for hardware design. Furthermore, a logical framework
may also permit mechanized support for metareasoning; for example, reasoning by

Phil. Trans. R. Soc. Lond. A (1992)
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72 J. Goguen and others

symmetry can be formalized as a theorem about syntactic properties of (encoded)
sentences in forms like the following:

= (Vs,c¢: Formula) (Va,v,v": Var) (s = swap(v', v, s) A {v,v"} free-in c)
= (Ve[v/x]t 8" = "c[v Jx] 7).

When the framework logic has a sublogic with an interpreter, then metatheorems
can be executed to shortcut proof construction. The possibility of metalevel reasoning
distinguishes logical frameworks from reconfigurable mechanized theorem provers
like EUDOPHILOS (Sawamura et al. 1990), which only provide convenient notations for
defining logics. Most logical frameworks lack a tactic language, and thus arc only
proof checkers. Also, they tend to be rather inefficient, because of multiple levels of
interpretation. 20BJ takes a metalogical framework approach to encoding logics, in
the sense of Constable & Basin (1991), so that object logic syntax and inference rules
are encoded into order sorted equational logic, our framework metalogic. Object logic
structure is externalized, in that the inference rules of the object logic are encoded as
primitive operations on an ApT of object logic proofs.

3. A quick review of OBJ3

OBJ has three kinds of entity at its top level: objects, theories, and views. An object
encapsulates executable code, while a theory defines properties that may (or may not)
be satisfied by another object or theory. Both objects and theories are modules, and
consist of declarations and sentences in order sorted equational logic, which provides
a notion of subsort that rigorously supports (a kind of) multiple inheritance,
exception handling and overloading. A view is a binding of the entities declared in
some theory to entities in some other module, and also asserts that the other module
satisfies the properties declared in the theory. Theories and views are found in no
other implemented language with which we are familiar ; however, Standard ML, and
perhaps even Ada, have been influenced by this approach.

Modules can import other previously defined modules, and so that an OBJ
program is conceptually a graph of modules. Modules have signatures that introduce
new sorts and new operations among both new and imported sorts. Terms are built
up from operations, respecting their sort declarations. A reduction evaluates a given
term with respect to a given object, and OBJ supports reduction modulo
agsociativity, commutativity, and/or identity.

OBJ3 provides parametrized programming, a technique which helps support
design, verification, reuse and maintenance. Modules can be parametrized, and
parametrized modules use theories to define both the syntax and semantics of their
interfaces. Views indicate how to instantiate a parametrized module with an actual
parameter. Actual parameters are modules. Module expressions allow complex
combinations of already defined modules, including sums, instantiations and
transformations ; moreover, evaluating a module expression actually constructs the
described software (sub)system from the given components. Default views can greatly
reduce the effort of instantiating modules. Goguen (1990) argues that first-order
parametrized programming includes the essential power of higher-order program-
ming.

This kind of module composition is more powerful than the purely functional
composition of traditional functional programming, because a single module
instantiation can compose together many different functions all at once, in complex

Phil. Trans. R. Soc. Lond. A (1992)
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20BJ : a metalogical framework theorem prover 73

ways. For example, a parametrized complex arithmetic module CPXA can be
instantiated with any of several real arithmetic modules as actual parameter: single
precision reals, CPXA[SP-REAL]; double precision reals, CPXA[DP-REAL];
and multiple precision reals, CPXA [MP-REAL].

Each instantiation involves substituting dozens of functions into dozens of other
functions. While something similar is possible in higher-order functional pro-
gramming by encoding modules as records, it is much less natural, particularly if
intended to specify the interface semantics of CPXA. Furthermore, parametrized
programming allows the logic to remain first order, so that understanding and
verification can be simpler. Typical higher-order functional programming techniques
can be implemented with OBJ parametrized modules, often with greater flexibility
and clarity (see Goguen 1990).

Although OBJ executable code normally consists of equations that are interpreted
as rewrite rules, OBJ objects can also encapsulate LISP code, e.g. to provide efficient
built in data types, or to augment the system with new capabilities. This is
convenient for specifying, rapid prototyping, and debugging complex data types and
algorithms, and for building efficient theorem proving environments. It is also crucial
to our implementation of 20BJ. In addition, OBJ provides rewriting modulo
associative, commutative and/or identity equations, as well as user-definable
evaluation strategies that allow lazy, eager, and mixed evaluation strategies on an
operation-by-operation basis; memoization is also available on an operation-by-
operation basis. Finally, OBJ provides user-definable mixfix syntax, to support the
notational conventions of particular application domains.

4. The 20BJ architecture
(@) Encoding logics

An object logic is encoded in 20BJ as an ApT with primitive operations for each
of its inference rules and logical connectives. OBJ3 parametrized apTs can be
instantiated to encode almost any formal system without significant programming
effort. The (meta)user only needs to provide one module defining a term algebra for
the concrete syntax, and another for its inference rules as (conditional) equations.
The binding behaviour of connectives is defined by equations for the operation
bound, for computing which variables are bound in an (encoded) term. These two
modules essentially transcribe a conventional pencil and paper presentation of the
logic:

1. The abstract syntax of almost any object logic is easily encoded by representing
each connective as an operation in a term algebra, and can be given a natural
concrete syntax using OBJ3’s mixfix syntax.

2. 20BJ gets the syntactic operations that it needs to define inference rules,
substitution, B-reduction, etc., through a meta-programming interface to OBJ3. These
operatibns can implement the binding behaviour of encoded terms, so that inference
rules can be directly translated into (conditional) OBJ3 equations.

The phrase ‘meta-programming interface’” above refers to programming language
facilities that allow the terms and associated interpreter of a language to be treated
as an ADT in the language. A familiar example is LISP’s ‘eval’ function, for
evaluating S-expressions as LISP programs. For 20BJ, the meta-programming
interface is an OBJ3 module that provides construction and manipulation primitives
for OBJ3 terms and modules, plus rewriting in named modules. The objects FOPC~

Phil. Trans. R. Soc. Lond. A (1992)
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74 J. Goguen and others

SENTENCE and ENCODED-FOPC below show the ease of encoding the unsorted first
order predicate calculus in 20BJ.

obj FOPC-SENTENCE 1is

sorts Formula Term Var . subsort Var < Term.
op |Al_._: Var Formula -> Formula [ prec 28 ]
op |E|l-._: Var Formula -> Formula [ prec 28 ]

op__: Formula Formula -> Formula [ prec 20 gather (e & ) ]
op_v_: Formula Formula -> Formula [ prec 22 gather (e & ) ]
op.=>_:Formula Formula -> Formula [ prec25gather (e &) ] .

op _: Formula -> Formula [ prec 18 ]

**x* Import meta-programming interface, Oterm is the

*** sort of all sequents, and syntactic components of sequents.
pr OTERMX

subsorts Term Formula < Oterm

*** The binding characteristics of the operations are defined
var V : Var . var X : Formula

eq bound( ( |a] Vv X)) = [V]
eq bound( ( [E] V . X ) ) = [V]
endo

obj ENCODED-FOPC is
*** We currently use a refinement sequent calculus presentation
pr SEQUENTS-LANGUAGE[ FOPC-SENTENCES ]

*** identify inference rules

op andi : -> Rule

op oril : -> Rule

op orir : -> Rule

op Ei : Term -> Rule

op ande : Int -> Rule

op hyp : Int -> Rule

*** define behaviour of inference rules

eq andi (H|-X"Y) = (H|- X, H|-Y)

eq oril (H|- X v YY) = (H|-X)

eq orir (H|]- X v Y) = (H|-Y) .

eq impi (H|-X=>Y) = (H; X|-Y) .

ceq Ei( T ) (HI|-[E]V .Y) = (HI|- (Yo l[T] / [V]))
if diff( freevars(T), freevars(H |- (|E|V . Y ))) == nil.

ceqgande( N ) (H|-X) = (H; [ Tsubterms (hyp(N,H)) ] |- X)
if matches( Z2 " Y, hyp(N, H) )

ceq hyp( N ) (H|[-X) = O
if X == hyp(N,H)

* k%

endo

A term in the proof Apr is a pair (@ — ¢) denoting a (partial) proof with conclusion
¢ whose completion requires proving the (possibly empty) list @ of assumptions.
These terms are built using just two primitive constructor operations.

Phil. Trans. R. Soc. Lond. A (1992)
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20BJ : a metalogical framework theorem prover 75

1. Rule application constructs proof terms for single inference rule applications.
Given R (identifying a rule) and @ (encoding a sentence), and assuming that the
current frame includes an equation R G = @(, R) defining the application of R to &,
then the proof term @(G, R) > G is constructed. For example, given the equations
defining rules in FOPC-ENCODED, applying the rule impi to the goal -a = b gives
a partial proof of a=>b from the assumption atb. If there is no applicable
equation (i.e. if R does not apply to (), then an exception is returned.

2. Proof composition yields a proof term denoting the combination of two or more
sub-proofs. Given a term (@ — ¢) encoding a partial proof with assumptions @ = ¢,,
.oy $,, and given a list of terms (@D,—>¢,) encoding (partial) proofs of those
assumptions, then the term (®,,..., P, > ¢) is constructed.

The soundness and completeness of these two proof operations follows from the
formalism in §5. Rule application constructs proof terms that denote axioms of the
object logic, while proof composition implements an amalgamation of combination
and composition that suffices for any logic where inference rules have single sentence
consequents.

20BJ’s proof apt is an algebra of proofs in the encoded logic, with proof
composition as its key structuring operation. Conventional systems, such as Nuprl
(Constable et al. 1986; Constable & Basin 1991) or Isabelle (Paulson 1988), identify
each inference rule with a corresponding constructor of the proof apt. Thus these
systems construct proofs by composing inference rule primitives, rather than by
composing proofs. Therefore, such systems must implement tactic combinators (and
hence many tactics) as higher-order functions. By contrast, 20BJ supports a
transparent purely first-order treatment of tactics. This has several important
benefits, as discussed in §3c below.

Internally, proof terms are derivation trees which may include the subproofs used,
as well as the proof’s conclusion and assumptions. When two or more proofs are
composed, the system constructs the derivation tree for the resulting proof by joining
the derivation trees of the components. This extra information is invisible to the
tactic interface, but is provided to the user interface (see §4) to support interactive
proof editing, for example, to browse through proof structure or to undo some
previous step. The level of detail in derivation trees may be reduced by a ‘folding’
operation, which collapses a subproof tree to just its conclusion and assumptions;
this changes the representation of proofs, but not their meaning.

(b) Logical frameworks and meta-level reasoning

20BJ takes a metalogical framework approach to encoding logics, in the sense of
Constable & Basin (1991), using order sorted equational logic as a metalogic for
encoding object logic syntax and operations. This externalizes object logic structure
by encoding inference rules as primitive operations on a proof apT. By contrast,
systems like the Edinburgh Logical Framework (ELF) (Harper et al. 1987), Isabelle
(Poulson 1987), and A-Prolog (Miller 1990), internalize parts of the object logic, by
identifying some object logic structures with corresponding framework logic
structures. For example, variable binding in ELF is represented by using lambda
abstraction from the framework logic, so that an existential quantifier would be
encoded as exists = [t| Type][x: (t > Prop)]....
In particular, Jz:Int.P would be encoded as exists[x:Int]P, where [v:T]¢ is
understood as Av:T.¢. (The notation [v|71']¢ is similar, except that the instantiation

Phil. Trans. R. Soc. Lond. A (1992)
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for v is deduced from context.) Also, ELF identifies the object logic consequence
relation with that of the framework logic, and encodes object logic inference rules as
axioms for a provability predicate, rather than as operations on proofs. For example,
the inference rule for implication introduction is encoded as the axiom

(p: Prop) (Lg: Prop) (true(p) —true(q)) — (true(= (p.q))),

where ITz: 7" denotes the universal quantification Ya: 7. A logic encoded in ELF thus
‘borrows’ its consequence relation and proof structure from the framework logic.

Internalizing object logic structure this way considerably simplifies object logic
encoding, because fiddly details of variable binding, proof construction, equality of
terms, ete., can be avoided. However, internalization also severely restricts the meta-
level reasoning that can be supported. For example, ELF cannot prove meta-
theorems by induction over object logic proof structure; rather more seriously, ELF
cannot encode logics with consequence relations that differ markedly from its
framework logic. 20BJ and other systems based on externalized encodings (e.g.
recent work with Nuprl (Constable & Basin 1991) and LF, (Matthews et al. 1991)) do
not have these restrictions. On the plus side, the ELF encoding supports automatic
construction of introduction and elimination rules for connectives, as well as
comparatively easy proofs for faithfulness and adequacy, i.e. that every proof in the
logic has an equivalent in its encoding and vice versa.

(¢) Proof automation in 20BJ

Mechanized theorem proving systems usually support proof automation through
the programming language used to implement the system. Typically, the logic is
mechanized as an ADT in the implementation language, with the inference rules as
primitive operations. Then programs to construct proofs are written in the
implementation language by combining inference rule operations. Thus the
implementation language is used as a meta-language.

Because 20BJ’s framework logic is implemented in the powerful programming
language OBJ3, tactics can be programmed in its framework logic rather than its
implementation language. 20BJ’s tactic programming interface extends the proof
ADT to a tactic ADT by adding a tactic application operation, in effect, an interpreter
for tactics, based on the following sequential composition combinators:

(Firsty THEN {Second ), where {(First) and {Second ) are tactics, applies {First)
and then applies {Second ) to any subgoals raised by applying {(First).

{Firsty THENL {RuleList ), where (RuleList ) is list of tactics, applies {First) and
then applies the elements of {RuleList) to the corresponding subgoals raised by
(First y, i.e. the first element of (RuleList) is applied to the first subgoal raised, the
second element is applied to the second subgoal raised, ete.

Any recursively enumerable sequence of inference rule applications can be
programmed with THEN and THENL by using (recursive) equations written in OBJ 3.
For example, we can introduce a tactic that repeats a given inference rule a given
number of times with the recursive definition

eq REPEAT (N, R) = 1if N == 1
then R
else R THEN REPEAT(N — 1, R) fi.

T OBJ3 was originally designed as an equational prototyping and specification language. The relatively small
extra functionality needed to support theorem proving was added as part of the 2013J project.

Phil. Trans. R. Soc. Lond. 4 (1992)
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Often one wants to write a tactic whose action depends on the goal to which it is
applied, but the sequential composition combinators are not sufficient for such
tactics, because they cannot pass goals to tactics. 20BJ has additional features for
tactics of this type.

L. For handling “do nothing’ cases, the identity tactic idtac applied to a goal
constructs the empty partial proof, containing just that goal.

2. If the tactic being applied is neither a primitive inference rule nor a sequential
composition, then the interpreter applies a tactic expansion operation to the tactic
and current goal. After this, the interpreter is called again to apply the resulting
tactic to the current goal.

For example, we can define a tactic that exhaustively strips off universal
quantifiers as follows:

op stripUniv : -> Tactic

vars G : ProofGoal

eq stripUniv G = if hasleadingunivguant (G)
then RuleToIntroUnivQuant THEN stripUniv
else idtac fi

The tactic expansion operation has juxtaposition syntax, corresponding to the
OBJ3 syntax declaration _ _, and it allows the behaviour of a tactic to depend on its
goal. Therefore 20BdJ does not need to implement tactic combinators as higher-order
functions, and thus can stay within its first-order equational framework. This makes
tactic programming and meta-programming significantly easier and more flexible
than the usual higher-order function approach. For example, it is easy to write meta-
interpreters for special purpose tactic languages. The operation insert defined
below executes a composition of tactics, inserting a second tactic when a particular
condition is reached. The higher-order functional approach precludes this kind of
meta-programming, because it cannot treat tactics as data structures.

op insert : Tactic Tactic -> Tactic

ceq insert (Tl THEN T2, Inttac) G = T1 THEN insert (T2, IntTac)
if not somecond (G)

ceq insert(T, IntTac) G = IntTac THEN insert(T, IntTac)

if somecond(G)

ceq insert (T, IntTac) G = T

if not somecond(G) and not isaTHENterm (T)

Another important benefit of embedding the tactic programming language in the
framework logic is that machinery for reasoning about object logics can also be used
for reasoning about tactics. For example, when using a theorem prover intensively
for some application, one often wants to replace a frequently used (or slow running)
tactic by a more efficient special purpose inference procedure. In hardware
verification, for instance, one might want efficient normalization procedures for
certain common circuits. But the specialist procedure and the tactic should be
proved equivalent before making the replacement. A theorem prover with a
conventional external tactic programming language will require a special proof
environment for the tactic programming language. Because this language is typically
complex (e.g. a dialect of ML), this can be an extensive undertaking. Thus, such
proofs are either done informally, or else are restricted to a subset of the tactic
language. In either case, users need to learn a second proof system. Neither of these
difficulties applies in 20BJ.

Phil. Trans. R. Soc. Lond. 4 (1992)


http://rsta.royalsocietypublishing.org/

A

/

A

THE ROYAL

PHILOSOPHICAL
TRANSACTIONS

SOCIETY

OF

L2

TaNsactions | HE ROVAL

SOCIETY

OF

Downloaded from rsta.royalsocietypublishing.org

78 J. Goguen and others

In principle, any metalogical framework with an interpreter for its framework
logic could support a similar embedded tactic programming interface. But in
practice, 20BJ is the only system we know with a workable implementation for its
framework logic. For example, the metalogical framework based on Nuprl proposed
in Constable & Basin (1991) provides little more than a bare lambda calculus for
writing tactics. OBJ3’s efficiency as a programming language also minimizes the
potential inefficiency of applying an inference step in the (encoded) object logic as
several inference steps in the framework logic: OBJ3 executes such inferences at a
speed close to that of an implementation in a programming language like ML.
However, in systems such as Nuprl and LF,, the inferences needed to apply an
(encoded) inference rule are quite unwieldy, and require non-trivial tactics written in
the system’s meta-language.

(d) Defining and manipulating theories

A further benefit of implementing the framework logic in OBJ3 is that its powerful
higher-order module system can be used to structure theories and libraries of
lemmas. From a logical perspective, the module implementing the proof apr and
tactic interface of 20BJ is an (equational) theory of encoded proofs. Thus a theory
in the object logic can be given as a module extending the object logic module with
new atomic proofs for its axioms, as in the following theory of groups:

obj GROUP is sort Grp Grp_Var
subsorts Grp < Term

subsorts Grp_Var < Var

subsorts Grp_Var < Grp

op - o _ : Grp Grp -> Grp

op e : Grp

op inv : Grp -> Grp

ops grpidl grpid2 grpass : ->AxId
vars x y z : Grp_Var

eq axom(grpid) = ax( * |- |A| x . x ©
eq axiom(grpinv) = ax( * |- || x . X
eq axiom(grpass) =

ax( * |- JAlx . |aly . |Alz.x0(yoz) = (xoy)oz)
endo

Axioms, which are atomic proofs defined with the built-in operator ax, appear on the
right-hand sides of equations whose left-hand side applies the axiom operator to an
identifying constant. This indirect approach can ensure that proofs only use those
axioms actually given in their defining module.

This theory of groups also illustrates how 20BJ encodes theories in equational
logic. As shown in §3, 20BJ frames typically use OBJ3 sorts to represent the
syntactic kind of encoded object logic terms. For example, in FOPC-SENTENCE, the
sort of a term indicates whether it encodes a variable Var or a non-variable term
Term. Thus some extra care is needed to encode object logic sorts with OBJ sorts.
The usual approach (as in GROUP) introduces an OBJ3 sort S_K for each possible
combination of a sort § and a syntactic kind K. Also, for each subsort declaration
subsort K <K’ and sort S a subsort declaration subsort S_K < S_K' is
introduced. Similarly, to encode an order sorted object theory, we introduce a
subsort declaration subsort S_K < S’ _K for each axiom § < 8" and syntactic kind

Phil. Trans. R. Soc. Lond. 4 (1992)


http://rsta.royalsocietypublishing.org/

A
A

r

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

/A\\
5\

a

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

20BJ : a metalogical framework theorem prover 79

K. For example, an operator f:4— C of syntactic kind K and argument kind K’
would be encoded by an OBJ3 operator

op £ : AK' -> C.K

Then OBJ3’s sort-checking will ensure that £ can only be applied to arguments
encoding terms of sort 4 (or a subsort) and syntactic kind K’ (or a subsort). For a
more natural looking presentation, we can name the sorts S_K just S when there is
no syntactic kind K’ that contains K. Thus, in the GROUP example, to encode Vars
or Terms with sort Grp, we introduce the OBJ3 sort Grp_Var for encoding variables
of sort Grp, but use the sort Grp for encoding Terms of sort Grp. Alternatively, we
can use OBJ3’s ‘sort-constraint’ mechanism to enforce syntactic constraints, and
then use OBJ3 sorts exclusively to encode sort information. Though somewhat more
complicated, this is useful when there are many syntactic kinds or when the
constraints on object syntax cannot be expressed with OBJ3 sorts.

Theories defined this way can be combined and manipulated with the full facilities
of OBJ3’s higher-order module system. Theories can be extended and/or joined,
abstracted, instantiated, and have multiple views. OBJ3’s open and close
mechanisms allow extending modules with equations for theorems proved within
them. It is also easy to construct theories that are abstract over one or more theories.
For example, proofs in group theory could be constructed in the module

obj GROUP_PFS[ G :: GROUP ] is endo

openr GROUP_FPS

*** Construct group theory proofs here

close
An instance of the resulting module could then be constructed using a command of
the form

make GND_GROUP_PFS is GROUP_PFS[GroupMod] endm

where GroupMod is a view of some OBJ3 module that satisfies GROUP. The resulting
module GND_GROUP_PFS would contain concrete instances of the proofs constructed
in GROUP_PFS. All these mechanisms also apply to tactics, because tactics are
expressed in OBJ3. Thus we do not need separate mechanisms to manage how
theorems depend on the tactics used to prove them.

(e) 20BJ as a hybrid framework

A key practical drawback of tactic based mechanized theorem proving is its
relative inefficiency compared to term rewriting and custom-built decision
procedures, because of the overhead in explicitly invoking inference rules.
Implementing such procedures from scratch can be expensive, but 20BJ can use the
OBJ3 interpreter for controlled rewriting of object logic terms in named OBJ3
modules, and can also call procedures coded in the underlying LISP.

The combination of OBJ3’s interpreter for efficient rewriting modulo associativity,
commutativity, and/or identity, and its mechanisms for controlling the rules used
for rewriting, makes it possible to implement rewriting systems for specific proof
tasks very efficiently. We intend to extend the semantics outlined in §5 to cover
automatic compilation of suitable axioms and lemmas in the object logic into
equivalent OBJ3 equations. For example, the axiom

|al x . |A] v . |A|] z. append(cons (x,y),z) = cons (x,append(y,z))
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Figure 1. Window layout for 20BJ tool.
Figure 2. The apply popup.

expressed in FOPC_SENTENCE syntax should translate to the OBJ equation
eqg append (cons (x,y),z) = cons(x,append(y,z)) .

Such a compiler would make 20BdJ a hybrid logical framework, in which some
object logic proofs are internalized as OBJ3 rewriting. 20BJ can already apply
manually supplied internal axioms.

Some industrial applications require special purpose programs in a low level
imperative language; a good example is the boolean decision diagrams (Bpps) used
in hardware verification (Hoereth 1991). 20B4J tactics can invoke such efficient proof
procedures by using OBJ3’s ‘built-in’ facility to attach LISP and/or C code to
0OBJ3 operations.

5. The 20BJ tool

The 20BJ tool is a customizable X11 window harness for 20BJ, with three main
components: a command panel showing the available options; a small area for
system messages; a text window for proof editing and interaction with OBJ3.

The text field provides in-line editing of OBJ3 command lines, in an Kmacs-like
shell, with user definable key bindings (see figures 1 and 2).

The command panel has nine buttons and a text field labelled ‘ File:” for giving file-
names to be loaded or saved. The buttons either provide an operation (c.g. the print
button sends a screendump to the printer), or an auxiliary operation via a popup.
The apply popup gives a user interface for OBJ3’s apply operation, which applies a
given rule from a named module to a particular position of a given term. Variable
instantiation fields (which are needed for applying some rules in the reverse
direction) can be dynamically added. The set popup provides a sheet for setting
various OBJ3 system parameters. The lactic popup provides a user interface for
applying proof tactics to goals and subgoals. The user need only give goal
descriptions or tactics, as the harness provides tactic language syntax. Unedited text
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Figure 3. The set popup.
Figure 4. The tactic popup.

fields and buttons remain unaltered for use in subsequent rule applications.
Feedback is manipulated before being displayed to provide more informative
descriptions. (See figures 3 and 4.)

6. Foundations

A project like 20BJ raises difficult issues about foundations, including: What is
logic? What is encoding ? What does it mean for an encoding to be correct ? This
section informally describes some categorical metamathematics to support using
equational logic as a logical framework; details will appear elsewhere. We enrich
parchments, charters and institutions (as in Goguen & Burstall (1984, 1986)) to
include proofs, and we define notions of encoding and correctness at this level of
abstraction.

(a) Institutions, charters and parchments

The theory of institutions formalizes the intuitive notion of logical system (Goguen
& Burstall 1984). An institution consists of: a category of signatures (giving non-
logical symbols) ; a set of Z-sentences for each signature X; a category of Z-models for
each X; and a X-satisfaction relation between Z-sentences and X-models for each X.
The basic axiom says that truth (i.e. satisfaction) is invariant under change of
notation (by signature morphisms).

To ease the construction of institutions, Goguen & Burstall (1986) introduced
charters and parchments. A charler consists of: a category of signatures; a category
of ‘syntactic’ systems; an adjunction between these two categories (a categorical
version of the fact that the syntax of a logical system is freely generated over its
signature); a set-valued ‘base’ functor which extracts the sentences from these
syntactic systems; and a ‘ground’ object which is mapped by the base functor to
{true, false}, and used for interpreting syntactic systems as models.

Although satisfaction may be obtained automatically by chartering, it is still some
trouble to construct the category of syntactic systems. Parchments give these for
free. A parchment consists of: a category of signatures; an equational signature Z* for
every signature X, giving syntax; a sort ‘*’ such that (7'y+), is the set of all XZ-
sentences; a ‘ground’ signature I'; and a I'*-algebra in which to interpret sentences.
Given a parchment, the syntactic systems of the charter to which it gives rise are
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pairs whose first component is a signature, and whose second component is the initial
algebra of the corresponding equational signature.

(b) Logics as ruled institutions and parchments

To define what it means to encode an object logic into order sorted equational
logic, we will equip institutions with rules of inference and the proofs they generate,
and we will assume that the object logic is written on parchment, i.e. that its syntax
is an initial algebra.

More precisely, a ruled institution consists of : a category of signatures; a category
of sets of Z-sentences with Z-proofs as morphisms between them, generated by the
Y-rules of inference for each X, plus the inclusions, and closed under products; and
for each X, a X-satisfaction relation between Z-sentences and proofs, and X-models,
such that rules of inference, inclusions, products, and satisfaction are preserved by
signature morphisms. Ruled institutions may be constructed from ruled parchments,
which have: an equational signature X" for every signature X, providing the syntax ;
a sort ‘*’ such that (7'+), is the set of all Z-sentences; a sort ‘' such that X,
contains precisely the Z-rules of inference; a ‘ground’ signature I'; and a I'*-algebra
in which to interpret sentences and proofs.

We can now rephrase and clarify our assumptions by saying that object logics are
written on ruled parchment, and hereafter we assume that every object logic is given
in this way. It may be surprising that ruled parchments (and ruled institutions) are
automatically sound. In fact, soundness is implicit in (_)* being a functor from the
category of object logic signatures to the category of equational signatures.

(¢) Encoding object logics into equational logic

To encode an object logic & into equational logic (hereafter denoted £2), for every
&£ blgnature ¥, we need an equational theory presentation £+ with a sort “*’ such
that there is a bijection (natural in X) between the set (7'g+), of all £, Z-sentences,
and the set (7'y+), of all terms that encode sentences; i.e. an encoding should provide
a distinet representation for each object logic sentence. Given a X-sentence e, let us
denote the term encoding it by é. Next, the encoding of an & rule of inference R is
a set R of rewrite rules such that for any set S of sentences, R rewrites S to S iff
S —>8"is an instance of R, and R leaves S unchanged iff R does not apply to S, so
that deduction on encoded sentences exactly mirrors deduction in the object logic.
(Actually, S and " above may be any aggregate of sentences, such as multisets or
lists, having a predicate ‘<’ for aggregate inolusion and an operation ‘U’ for
combining aggregates. Note that we have extended ‘"’ to aggregates of sentences.)

The above encoding of the inference rule £2 was typical of an indirect encoding. In
the case of a direct encoding, all the sentences are equations, and all the rules are
equational (see next section). However, many logics have a non-trivial ‘intersection’
with €2; some sentences are equations, and some of the rules are equational. It
follows that when reasoning in an encoding of an object logic theory, we shall
sometimes want to apply indirectly encoded rules (for the non-equational steps), and
OBJ rewriting at other times (for the equational ones). This ‘dual” approach to
deduction can of course only work if the two terms that make up an equation term
(the encoding) are the same as the two terms that make up (an instance of ) the £2
equation. In other words, the terms which denote terms in the object logic signature
have to be the same as the terms which they denote. Such an encoding we refer to
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as a hybrid encoding. Clearly hybrid encodings are perfectly legitimate with respect
to our notion of encoding, and hence the proposition below applies to them also.

The set of X provability terms contains all terms A4 5 C such that 4 > is an
instance of an inference rule, or else C' < A4 satisfying closed under the operations
combine and compose, and the equations

compose {D =, @' @' =, P} = P, P,
combine { P @' P, @"} = P, @' U D”.

(The notation ‘t=;’ used here should not be confused with the sequents used in
sequent presentations of logic.) We then have the following:

Proposition 1. The bijection * " extends to a bijection (natural in X) between the set of
L provability terms and PO (PSen 4(X)), where PSen, (T) is the category of all T proofs
n L, and PO is the functor which maps a category to the preorder obtained by identifying
all arrows having the same source and target.

(d) Adequacy and faithfulness

An important question for any logical framework is how proof terms in the
encoded object logic relate to proofs in the object logic. Let us call an encoding of a
logic # in 20BJ a frame, and denote it 20BJ[.Z]. Then a frame 20BJ[ L] is adequate
iff it can prove everything % can, and is faithful iff it can prove no more than that.
The following is immediate from Proposition 1 and our general assumptions:

Theorem 2. 20BJ[.Z] is adequate and faithful.

(e) Internal encoding

Many logics Z have a subset of their syntax which is essentially equational logic.
For example, in first-order logic with equality, a sentence (Va,m: Nat) = (n+m,
m+n) corresponds to the equation (Va,m: Nat) n+m =m+n. Also, any first-
order theory consisting of such equational sentences translates into equational logic,
where one can deduce consequences, and then translate them back. This process is
faithful in the sense that any such derivation has a corresponding proof entirely in
first-order logic with equality.

We can formalize and generalize this to any framework logic # and object logic ¢
as follows: a ruled institution morphism from O to F consists of a functor £ from the
category of object logic signatures to the category of framework logic signatures, and
for every O signature X, a subset F,Z of Sen,Z plus functions oy: FyX > Sen, EX
and my: Seng EX—@,Z that are order -preserving (on the underlying preorders
induced by identifying all arrows having the same source and target in the respective
categories of proofs) and form a Galois connection from F,% to (Seng, EX)°P. The
function o maps sentences to the object level, while the function m maps sentences
to the meta level. This is the kind of encoding used by logical (as opposed to meta-
logical) frameworks. From Proposition 1 we now obtain

Proposition 3. Internal encoding preserves adequacy and faithfulness.

This helps explain how deduction in a frame 20BJ[.#] can proceed at both the
meta and the object level.
(f) Soundness of labelled proof trees
The implementation of proof trees in 20BJ is actually a bit more complex than
Phil. Trans. R. Soc. Lond. A4 (1992)
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indicated in §5¢, because it can record individual rule applications. We now briefly
describe an algebra of labelled proof trees, and argue that its operations are sound.

If X is an object logic signature, then labelled X-proof trees are specified as follows :
a label is an inference rule, or open, or closed ; leaves are pairs (S, open) or (S, closed ),
where S is a set of X-sentences; nodes are pairs (S, B) where § is a set of Z-sentences
and R is an inference rule such that £: U, S, 8 where the S, are the first coordinates
of the predecessors of (8. R); if P a proof tree with its list [(7;] of open subgoals, and
if |P] is a list of proofs such that goal(P,) = , for each 7, then their composition is
the tree resulting when the ¢, in P are replaced by the P,; if P is a proof tree, then
the removal of all internal nodes, and the replacement of the label of the goal of P
by “?’ (to indicate loss of proof structure) yields a tree denoted fold(P); the leaves
(0,1) of a proof tree, where [ is a label, may be replaced by (0, closed ). The soundness of
this representation is stated as follows:

Proposition 4. P is a proof tree iff there is a Z-proof: U subgoals( fold()) — goal(P).

The proof is by induction on the structure of P. Note that sequents of the form
Sk58 from §5¢ can be identified with proof trees [(87,?), (S, open)], for §* = S.

(g9) 4 frame for first-order logic

This subsection very briefly sketches a ruled parchment presentation and encoding
into &2 for many sorted first order logic, henceforth written # 0.%. Given an & 0.% -
signature (S, X, I1), then (7' 5 1)) contains sequents of the form H =X, where H is
a set of -sentences and X is a Z-sentence (the sequents are therefore the ‘sentences’
in this presentation). (75 m+)., contains the instances of the F 0% -rules of
inference ; for example it contains {H X, H =Y} >{HFX A Y} whenever H is a set
of Z-sentences and X,Y are X-sentences, corresponding to the rule andi. The
presentation of the other rules is similar. The encoded proof trees are constructed
following the general recipe given above. For example, an application of andi in a
proof tree corresponds to a subtree of the form

[((HEX AYS, andi), [((HEX3, 1), (HEY )]

7. Future research

Our research into hybrid logical frameworks and the 20BJ architecture is still at
a relatively early stage. Besides further work on specific applications of 20BJ
(especially hardware verification), research topics still to be addressed include the
following.

1. Induction principles for order sorted algebra. The current version of 20BJ lacks
a built in induction principle. It is the responsibility of the user to provide
appropriate inference rules in a given frame. The FOPC frame, for example, provides
a simple mechanism by which the user can enumerate a set of constructors for a given
sort. OBJ3 itself does not provide induction principles. It is, therefore, a research
priority to provide a mechanism for the automatic derivation of structural induction
principles from data constraints (in the sense of Goguen & Burstall (1984)) on apTs
defined in OBJ3; we view data constraints as providing the specification side of
induction.

2. Mechanized derivation of OBJ equations from (encoded) theorems. As mentioned in
§3(e), we wish to develop a mechanism to translate suitable (encoded) theorems into
equivalent OBJ3 equations.
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3. Support for the proof and use of meta-theorems. 20BJ currently provides very
spartan facilities for constructing meta-level proofs. Much more extensive machinery
will be needed to make meta-level reasoning like that mentioned in §1a workable in
practice.

4. Proof refinement. A common complaint about current mechanized proof systems
is that they are inconvenient for developing proofs that are not already fully worked
out, as these systems only support a rather awkward bottom-up approach to proof
construction, rather than a more natural top-down approach in which proofs are first
constructed as skeletons, and then may refined into full proofs. Because 20BJ
embeds its tactic language and its ApT of object logic proofs in its framework logic,
it is possible to reason about proofs in 20BJ by reasoning about tactics that
construct them. Hence, proof skeletons can be represented in 20BJ as partial, non-
executable, specifications for proof tactics. Thus, by providing mechanisms for
constructing and refining tactic specifications, 20BJ could support the construction
and refinement of proof skeletons. A more short-term approach is to allow subproof-
valued variables in proofs.

5. Frame compiler. We intend to build a compiler from ruled parchments to 20BJ
frames, where ruled charter specifications are expressed in OBJ3 itself, and each rule
is mapped to a ‘button’ in the user interface.

We thank Mr Tim Winkler for help with details of the OBJ3 system upon which 20BJ is built, and
we also thank him and all others who contributed to the construction of OBJ3, including Dr José
Meseguer, Dr Kokichi Futatsugi, Dr Claude Kirchner, Dr Hélene Kirchner, and Professor Jean-
Pierre Jouannaud. Production of the 20BJ tool has been aided by some earlier work of Mr Han
Yan on a tool for OBJ3, and by software distributed by the National Semiconductor Corporation.
The exposition of this paper has benefited greatly from terminology introduced in Constable &
Basin (1991). The research reported in this paper has been supported in part by grants from the
SERC, the Department of Trade and Industry, and the Fujitsu Corporation.
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